

CMP 334: Fifth Class

Boolean formula → combinational circuit

TINY Instruction Set Architecture green card

Performance

Metrics of performance
Performance and execution time
Relative performance
CPU Time equation
Some examples
Averages and weighted averages
Amdahl's law (take one)

For next class: HW 4 (begin HW 5) read A.2-, 2.1-4

Combinational Circuit Design

Combinational circuit
Output determined by input

Design process
1. Specify semantics

Black Box input and output
Truth Table (input determines output)

2. Truth table → Boolean formula
3. Minimize Boolean formula (optional)

Boolean algebra
Karnaugh maps

4. Boolean formula → combinational circuit

Boolean Formula → Combinational Circuit

Input wire for each variable

For each sub-formula

Replace operand with wire (output from its sub-circuit)

Replace operator with gate with output wire

~ becomes

& becomes

 | becomes

'r' = abc + abc + abc + abc
c' = ab + ac + bc

a
b

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

a
b

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

a
b

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

a
b

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

r

a
b

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

a

r
b

C'

cc

'r' = abc + abc + abc + abc
c' = ab + ac + bc

The TINY Computer

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

MAR
0x0000
0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0xffff

MDR

Z
N
C
O

registers
00000000

$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

PC IR

Understanding Performance

From qualitative to quantitative analysis

Performance metrics (what to measure)

What does “performance” mean?

Performance equations

Relative performance

CPU time equation

Amdahl's law

Statistical tools

Average and weighted average

Performance Metrics

Different measures of airplane “performance”?
Speed (mph) ?

Range (miles) ?

Capacity (passengers) ?

Throughput (passengers miles per hour) ?

Airplane Performance Metrics

Computer Performance Metrics

Execution (response) time (seconds)

CPU
time

 + I/O
time

Throughput (tasks per hour)

Availability (percent)

MTTF — Mean Time To Failure (years)

MTTR — Mean Time To Repair (minutes)

Execution energy (joules)

Throughput cost (tasks per hour per dollar)

 . . .

MTTF
MTTF+MTTR

Execution Time & Performance

Definition

Better performance mean shorter execution time

Relative performance

X is n times as fast as Y if and only if

Y takes n times as long as X to execute

PerformanceX ≡ 1
ExecutionTimeX

PX ≡ 1
EX

n =
PX

PY
=

EY

EX

Relative Performance

CPU Time Equation

Program execution time = CPU
time

 + I/0
time

CPU
time

 — key metric of processor performance

We will return to I/O
time

 later in the course

CPU
time

 = # instructions • (average) instruction
time

instruction
time

 = (average) cycles per instruction • cycle
time

cycle
time

 = (seconds)

clock
rate

 (Hertz — cycles per second)

CPU time(execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

seconds
cycle

= 1
clock rate

Performance Equations

Performance – inverse of execution time

CPU time equation

Amdahl's law

performance: P x ≡ 1
T x

relative performance:
P x

P y

=
T y

T x

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

 Relative CPU
time

 Performance

T X = # instructionsX ⋅CPIX ⋅ cycleTimeX

T X =
instructionsX ⋅CPIX

clockRateX

P X

PY

=
T Y

T X

=
instructionsY ⋅CPIY ⋅cycleTimeY

instructionsX ⋅CPIX ⋅cycleTimeX

P X

PY

=
T Y

T X

=
instructionsY ⋅CPIY ⋅clockRateX

instructionsX ⋅CPIX ⋅clockRateY

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

A New Computer Design

Our favorite program runs in 10 seconds on computer
A, which has a 2 GHz clock. We are trying to help a
computer designer build a computer, B, which will run
this program in 6 seconds. The designer has determined
that a substantial increase in the clock rate is possible,
but this increase will affect the rest of the CPU design,
causing computer B to require 1.2 times as many clock
cycles as computer A for this program.

What clock rate should we tell the designer to target?

A New Computer Design

A New Computer Design

T A

T B

= 10
6

=
instructions⋅CPIA⋅clockRateB

instructions⋅CPIB⋅clockRateA

10
6

=
instructions⋅CPIA⋅clockRateB

instructions⋅1.2⋅CPIA⋅2 GHz

clockRateB = 10⋅1.2⋅2
6

GHz = 4 GHz

P X

PY

=
T Y

T X

=
instructionsY ⋅CPIY ⋅clockRateX

instructionsX ⋅CPIX ⋅clockRateY

Which Computer is Faster

Suppose we have two implementations of
the same instruction set architecture.

Computer A has a clock cycle time of 250
ps and a CPI of 2.0 for some program, and
computer B has a clock cycle time of 500
ps and a CPI of 1.2 for the same program.

Which computer is faster for this program
and by how much?

Which Computer is Faster?

Which Computer is Faster?

P A

P B

=
instructions⋅CPIB⋅cycleTimeB

instructions⋅CPIA⋅cycleTimeA

P A

P B

= # instructions⋅1.2⋅500 ps
instructions⋅2.0⋅250 ps

P A

P B

= 1.2⋅500
2.0⋅250

= 600
500

= 1.2

Computer A is 1.2 times faster that Computer B

P X

PY

=
T Y

T X

=
instructionsY ⋅CPIY ⋅cycleTimeY

instructionsX ⋅CPIX ⋅cycleTimeX

Comparing Code Segments

Comparing Code Segments

T X = # instructionsX ⋅CPIX ⋅cycleTimeX

cyclesX = # instructionsX ⋅CPIX

cyclesX = A-cyclesX + B-cyclesX + C-cyclesX

cycles1 = #A-instr1⋅CPIA + #B-instr1⋅CPIB + #C-instr1⋅CPIC

cycles2 = #A-instr2⋅CPIA + #B-instr2⋅CPIB + #C-instr2⋅CPIC

cycles1 = 2⋅1 + 1⋅2 + 2⋅3 = 10 CPI1 = 10
5

= 2.0

cycles2 = 4⋅1 + 1⋅2 + 1⋅3 = 9 CPI2 = 9
6

= 1.5

Check Yourself

CPU Time Equation

P X

PY

=
T Y

T X

=
instructionsY ⋅CPIY ⋅clock rateX

instructionsX ⋅CPIX ⋅clock rateY

T J

T K

=
instructions J ⋅CPIJ ⋅clock rateK

instructionsK ⋅CPIK ⋅clock rate J

15 seconds
T K

=
instructionsJ ⋅0.6⋅CPI J ⋅1.1⋅clock rate J

instructionsJ ⋅0.6⋅CPI J ⋅1.1⋅clock rateJ

T K = 15⋅0.6⋅1.1 = 9.9 seconds

Basic Statistical Tools

total weight: W ≡∑
i=1

N

w i normalized weight: qi ≡
wi

W
 (∑

i = 0

N

qi =1)

average: v⃗ ≡
∑
i=1

N

v i

N

weighted average:
∑
i=1

N

wi vi

∑
i=1

N

w i

=
∑
i=1

N

wi v i

W
= ∑

i=1

N wi

W
v i = ∑

i=1

N

qi v i

Given values: {v1 , v2 , … vN } & weights: {w1 , w2 , … wN }

Grade Point Average

GPA ≡
∑
c∈Courses

GradePoint (c)⋅Hours(c)

∑
c∈Courses

Hours(c)

Typical Instruction Statistics

Instruction types, frequencies, and execution times

50% ALU instructions 5 CPI

30% Memory instructions

20% Load 8 CPI

10% Store 6 CPI

20% Branch instructions 10 CPI

0.5% Special instructions

Average Cycles Per Instruction

(Weighted) average CPI
= q

ALU
T

ALU
 + q

Load
T

Load
 + q

Store
T

Store
 + q

Branch
T

Branch

= 0.5•5 + 0.2•8 + 0.1•6 + 0.2•10

= 2.5 + 1.6 + 0.6 + 2.0

= 6.7 cycles approximation: 20 / 6.7 ≈ 3

Execution time fraction by instruction type

ALU 2.5 / 6.7 ~ 37.5%

Load 1.6 / 6.7 ~ 24.0%

Store 0.6 / 6.7 ~ 9.0%

Branch 2.0 / 6.7 ~ 30.0%

Performance Equations

Performance – inverse of execution time

CPU time equation

Amdahl's law

performance: P x ≡ 1
T x

relative performance:
P x

P y

=
T y

T x

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law

affected (8) unaffected (4)
old time (12)

improved (5) unaffected (4)

new time (9)

SpeedUp (1.6)

T
old

 = affected + unaffected

T
new

 = improved + unaffected

SpeedUp = affected / improved

Overall SpeedUp = T
old

 / T
new

(fraction affected) F
a
 = affected / T

old

(fraction unaffected) F
a
 = unaffected / T

old

Improving a Race Car

% time % fuel useage % tire ware % miles

acceleration 5 30 10 10

cruise 90 50 50 20

brake 5 10 40 40

turns 15 10 10 30

Average Cycles Per Instruction

(Weighted) average CPI
= q

ALU
T

ALU
 + q

Load
T

Load
 + q

Store
T

Store
 + q

Branch
T

Branch

= 0.5•5 + 0.2•8 + 0.1•6 + 0.2•10

= 2.5 + 1.6 + 0.6 + 2.0

= 6.7 cycles approximation: 20 / 6.7 ≈ 3

Execution time fraction by instruction type

ALU 2.5 / 6.7 ~ 37.5%

Load 1.6 / 6.7 ~ 24.0%

Store 0.6 / 6.7 ~ 9.0%

Branch 2.0 / 6.7 ~ 30.0%

CPU Time Equation

instruction time = # seconds
instruction

= # cycles
instruction

⋅# seconds
cycle

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

20 seconds ≈ # instructions⋅6.7⋅10−9 seconds

If T CPU (execution) ≈ 20 seconds, cycle time = 10−9 seconds

instructions ≈ 20

6.7⋅10−9 ≈ 3⋅109

Amdahl's Law 1

Improvement X
 reduces ALU instructions time from 5 to 4 ns

T X = (
2.5
6.7

20

5
4

+ 4.2
6.7

20) sec ≈ (7.5
1.25

+ 12.6) sec = 18.6 sec

T X = fraction affected⋅20 sec
improvement

+ fraction not affected⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 2

Improvement Y
 reduces Load instructions time from 8 to 4 ns

T Y = (
1.6
6.7

20

8
4

+
5.1
6.7

20) sec ≈ (4.8
2

+ 15.3) sec = 17.7 sec

T Y = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 3

Improvement Z
 reduces Store instructions time from 6 to 2 ns

T Z = (
0.6
6.7

20

6
2

+
6.1
6.7

20)sec ≈ (1.8
3

+ 18.3)sec = 18.9 sec

T Z = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Amdahl's Law 4

Improvement W
 reduces Branch instruction time from 10 to 5 ns

T W = (
2.0
6.7

20

10
5

+ 4.7
6.7

20) sec ≈ (6
2

+ 14.1) sec = 17.1 sec

T W = fraction affected⋅20 sec
improvement

+ fraction not affected ⋅20 sec

T new =
fraction affected⋅T old

improvement
+ fraction not affected⋅T old

Relative Performance

performance: P x ≡ 1
T x

relative performance:
P x

P y

=
T y

T x

P X

Pold

=
T old

T X

= 20
18.6

≈ 1.075

PY

Pold

=
T old

T Y

= 20
17.7

≈ 1.130

PZ

Pold

=
T old

T Z

= 20
18.9

≈ 1.058

PW

Pold

=
T old

T Z

= 20
17.1

≈ 1.170

