CMP 334: Fifth Class

- Boolean formula \rightarrow combinational circuit
- TINY Instruction Set Architecture green card

Performance

- Metrics of performance
- Performance and execution time
- Relative performance
- CPU Time equation
- Some examples
- Averages and weighted averages
- Amdahl's law (take one)
- For next class: HW 4 (begin HW 5) read A.2-, 2.1-4

Combinational Circuit Design

Combinational circuit

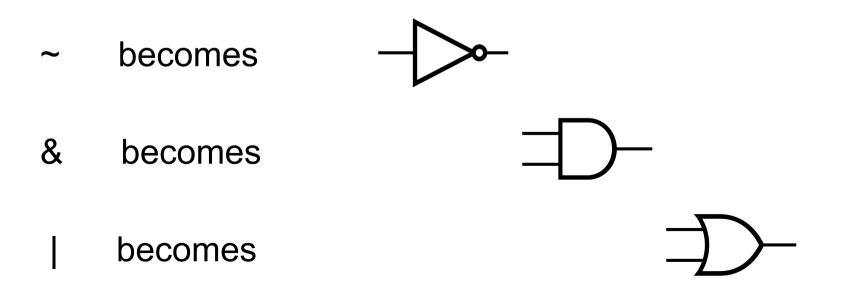
Output determined by input

Design process

- Specify semantics
 Black Box input and output
 Truth Table (input determines output)
- 2. Truth table \rightarrow Boolean formula
- **3. Minimize Boolean formula** (optional) Boolean algebra

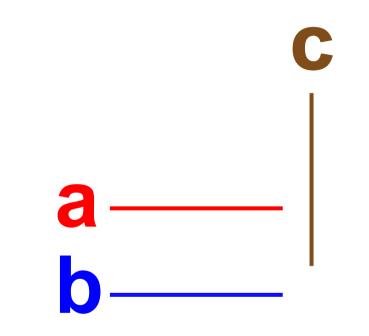
Karnaugh maps

4. Boolean formula \rightarrow combinational circuit

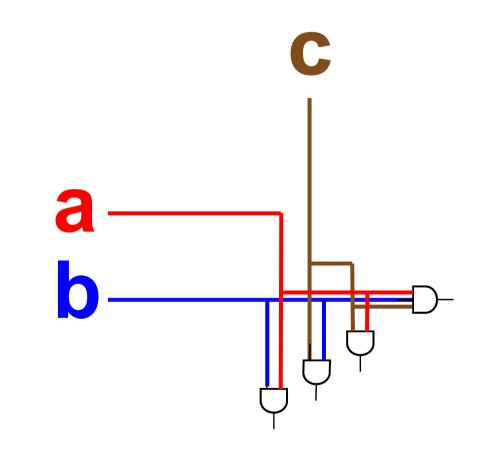

Boolean Formula → Combinational Circuit

Input wire for each variable

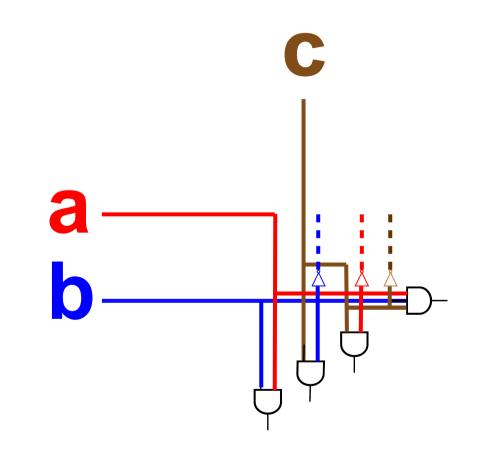
For each sub-formula

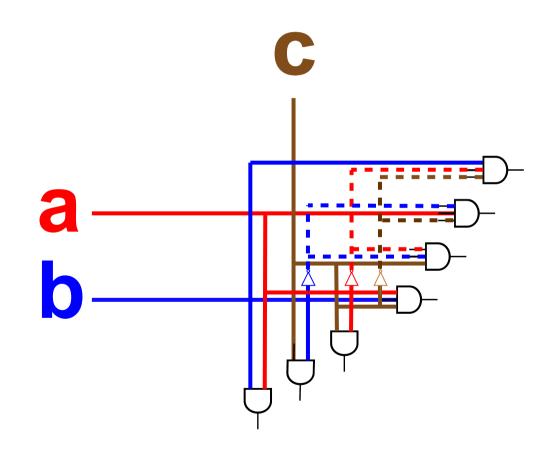

Replace operand with wire (output from its sub-circuit)

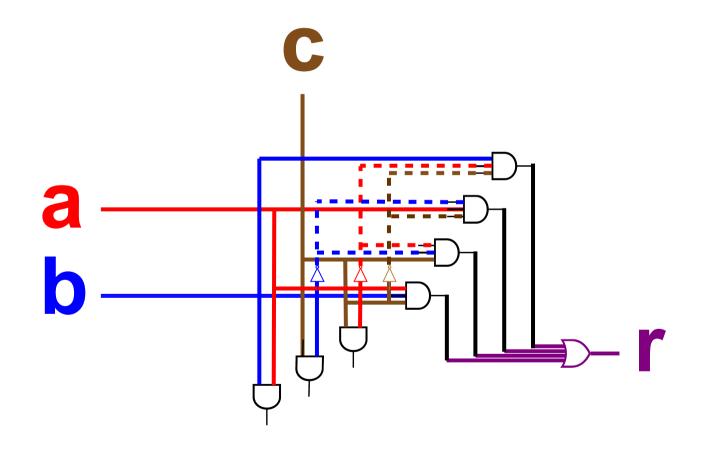
Replace operator with gate with output wire

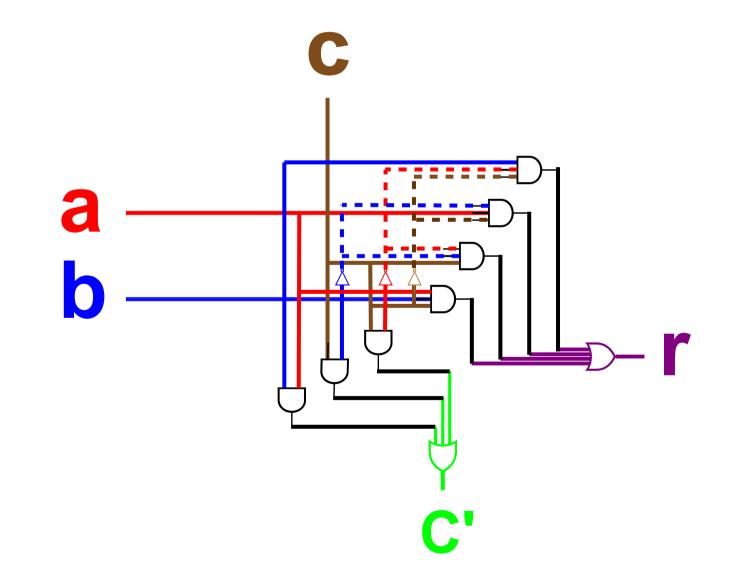


r = abc + abc + abc + abcc' = ab + ac + bc


r = abc + abc + abc + abc + abcc' = ab + ac + bc


r = abc + abc + abc + abc + abcc' = ab + ac + bc


r = abc + abc + abc + abc + abcc' = ab + ac + bc


r = abc + abc + abc + abcc' = ab + ac + bc

r = abc + abc + abc + abc + abc + abc + abcc' = ab + ac + bc

r = abc + abc + abc + abc + abcc' = ab + ac + bc

LIECv9

(columns 3 and 4) together

Fold bottom side

ei

card

Pull along per

_

3Gv8 Reference Data Card ("Green Card")

LEGV	8	Refe	rence l	Data	
CORE INSTRUCT	TION SET				
NAME, MNEX	10MIC	FOR- MAT	CINCODE (
ADD NAME, MINER	ADD	R	(Hex) 458	OPERATION (in Verilog) R[Rd] = R[Ra] + R[Rai]	
ADD Immediate	IDIA	ï	488-489	R[Rd] = R[Rn] + ALUTrurn	
ADD immediate & Set flags	ADDIS	i.	588-589	R[Rd] , FLAGS = R[Rn] + ALUInm	
ADD & Set flags	ADD3	R	558	R[Rd], FLAGS = R[Rn] + R[Rm]	
AND	AND	R	450	$R[Rd] = R[Ru] \triangleq R[Ru]$	
AND Immediate	ANDI	1	493-491	R[Rd] = R[Rn] & ALUIram	
AND invnediate & Set flags	ANDIS	I	190-791	R[Rd] , FLAGS = R[Rs] & ALUInni	
AND & Set flags Branch	ANDS D	R	750 0A0-08F	R[Rd], FLAGS = R[Rn] & R[Rm] PC = PC + BranchAddr	
Branch conditionally	B.cond	CB	240-247	if(FLAC8==cond)	
				PC = PC + CandBranchAddr R[30] = PC + 4;	
Branch with Link	RL	B	440-486	PC = PC + BranchAddr	
Branch to Register	BR	R	6B0	PC = R[Rt]	
Compare & Branch if Not Zero	(1992)	CB	5A8-5AF	if(R[Rt]!=0) PC = PC + CandBranchAddr	
Compare & Branch IT Zaro	083	CB	5A0-5A7	if[R[R1]==0) PC = PC + CondBranchAddr	
Exclusive OR	EOR	R	650	$\mathbb{R}[\mathbb{R}d] = \mathbb{R}[\mathbb{R}n] \wedge \mathbb{R}[\mathbb{R}m]$	
Exclusive OR Immediate	EORI	1	(90-69)	$\mathbb{R}[\mathbb{R}d] = \mathbb{R}[\mathbb{R}n] \wedge \mathrm{ALUluun}$	
LoaD Register Unscaled offset	LDUR	D	9C2	$\mathbb{R}[\mathbb{R}(t)] = \mathbb{M}[\mathbb{R}[\mathbb{R}(t)] + \mathbb{DTA}(t)\mathbb{R}(t)]$	
LoaD Bytz Unscaled offsat	LOURD	D	102	R[Rt]=(56%0, M[R[Rn] + DTAddr](7:0)}	
LoaD Half Unscaled offset	LDORH	D	302	R[Rt]=(48760, M[R]Rn] + DTAddr] (1599)	
LoaD Signed Word Unscaled offset	LUCEUM	D	9C4	R[Rt] ={ 32{ M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	
LeaD eXclusive Register	LDOR	D	642	R[Rd] = M[R[Rn] + DTAddr]	
Logical Shift Left	181	R	69B	R[Rd] = R[Rn] << sharni	
Logical Shift Right	LIR	R	69.6	R[Rd] = R[Rn] >>> share)	
MOVe wide with Keep	HOVE	IM	194-291	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) =	
MOVe wide with	NOVE	IM	694-697	MOVInun R[Rd] = { MOVInun <<	
Zato Inclusive OB	OFF	R	550	(Instruction[22:21]*16).) HIR-0 = HIR-1 (HIR-1)	
Inclusive OR Inclusive OR	ORRI	1	590-591	R[Rd] = R[Rn] R[Rn] R[Rd] = R[Rn] ALUTuun	
Immediate S'Tore Register					
Unscaled offsat	57UN	D	700	M[R[Rn] + DTAddr] = R[Rt]	
S'Torz Bytz Unscaled offset	STURD	D	100	M[R[Rn] + DTAddr](7:0) = R[Ri](7:0)	
S'Torz Half Unscaled offset	STURI	D	300	M[R[Rn] + DTAddr](15:0) = B[Ri](15:0)	
STore Word Unscaled offset	STURN	D	500	M[R[Rn] + DTAddr](31:0) = R[Ri](31:0)	
STore eXelusive	275R	Ð	640	M[R[Rn] + DTAddr] = B[Rr];	
Register SUBtract	5U0	R	658	R[Rm] = (atomic)?0:1 R[Rd] = R[Rn] - R[Rm]	
SUBiract	SUDI	1	(83-689	R[Rd] = R[Ra] - ALUInan	
Immediate SUBiraci					
Immediate & Set	SUBIS	I	188-789	R[Rd] , FLAGS = R[Rn] - ALUImm	
SUBtract & Set	5085	R	758	R[Rd], FLAGS = R[Rn] - R[Rm]	
flags (1) FLAGS are					l
(1) FLNOS are (2) ALUIrun -				U operation: Negative, Zero, «Verflov	1
(3) BranchAdd	r = (36(B	R addres	s [25]], BR	address, 2'b0 }	
(4) CondBrand	hAddr = {	4JICON	D BR addre	ns [25]], COND BR address, 2'60 }	
), DT_adds	oos)	
 (6) MOVImm (7) Atomic test 				nia, 1 if not steenia	
				2's complement)	
191 Since L R. J	and Cill ins	traction f	iornate have	encodes narrower than 11 bits, they are	

(9) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes

(10) If meither is operand a NaN and Value1 == Value2, FLAGS = 476010; If meither is operand a NaN and Value1 < Value2, FLAGS = 471000; If meither is operand a NaN and Value1 > Value2, FLAGS = 476010;

If an operand is a 1	Nas, ope	rands are	unordered						_
ARITHMETIC CORE	INSTR	UCTIO	N SET						Q
		FOR-	OPCODE/ SHAMT						
NAME, MNEMON Floating-point ADD Single	FADOS	MAT R	(Hex) 0FL(0A	OPEL SRJ-30			yert)	0E)	Netci
Floating-point ADD Double	FADOO	R	0F3 / 0A	D(M)=D)					
Floating-point CaMPara									
Single	PONES	R	0F1/08	FLAG5 = (684	n S(Ra	0		(1,1
Floating-point CaMPara Doubla	FCNPD	R	053/08	FLAG5 = (D[Rs]	u Djik	ф,		(1,1
Floating-point DIVide Single	FDIVS	R	0F1/06	S[Rd] = S[0]	64/8	(Rm) -			
Floating-point DIVide Double	FDIVD	R	073/05	$\mathbb{D}[M] = \mathbb{D}[$	R()/1	l(Re)			
Floating-point MULtiply Single	PHILS	R	0F1/02	S[Rd] = S[3	to[+5	(81)			
Floating-point MULtiply Double	PHOLO	R	013/02	D[Rd]=0)	Re]*	D(Re)			
Floating-point SUBtract Single	11006	R	$0\mathrm{P1}/0\mathrm{E}$	S[Rd] = S[1]	to] - 5	(11)			
Floating-point SUBEnct Double	55080	R	0F3/0E	$\mathbb{D}[\mathbf{U}_i = 0]$	(n)-1	D(Fin)			
LoaD Single floating-point	LOONS	R	7C2	5(R) - MJ	10	+ DTAd	h)		- (
LoaD Double floating-point	LDURD	R	709	D[11] - M]	E[Se]	+ DTA	40)		- (
MULtiply	NUL	R	4D8/1F	$\mathbb{R}[\mathbb{R}_{2}] = (\mathbb{R}]$	[RI]*	R(ka)	(613))	
Signed DIVide	BDIV	R	4D6/02	R[84] - R[
Signed MULtiply High	SNULH	R	40.6	$\mathbb{E}[\mathbf{R}_{i}] = \{\mathbf{R}\}$				61)	
STore Single floating-point	STURS	R	78.2	M[R[Ra]+					- (
STore Double floating-point	STURD	Н.	760	M[R[Fa]+			80		
Ussigned DIVide	VEGU	R	4D6703	R[Rd] = R[- (
Unigood MULtiply High	UNICEN	R	401	R[8d] = (8)	(R))*	R(ka)	(127)	(4)	(
CORE INSTRUCTION	FORM						_		
R opcode		Rm		unt	-	Rń	_		Ril
31	21		16.15	10	9		-5	4	
I opcode		ALI	U_immedia		0	Rn	_		Rd
31	22.21			10	9		5	4	
D opcode		D	_address	07	_	Rń	_	_	RL
31	21	20		12 11 10	-		51	•	
B opcode			159	t address				_	
31 26.25							_	_	-
CB Opcode		0	IND_BR_0	ddress				_	Rt
31 24 23							5	4	
IW opcode			MOV	immediat	8			_	Rd
31	213	20					5	4	
PSEUDOINSTRUCTIO	ON SET								
NAME		MN	EMONIC				RAT		
CoMPare CoMPare Incondisto			CMP			5 = RJ			
CoMPare Immediate			LDA						LUImn
LoaD Address MOVe			MOV			- R(R - R(R		51.	ADT
AA710			101	к	nu) .	- ntis	-1		

(5)

(5)

(5) (5) 6.5

(2.9)(1.2.9)

(1)

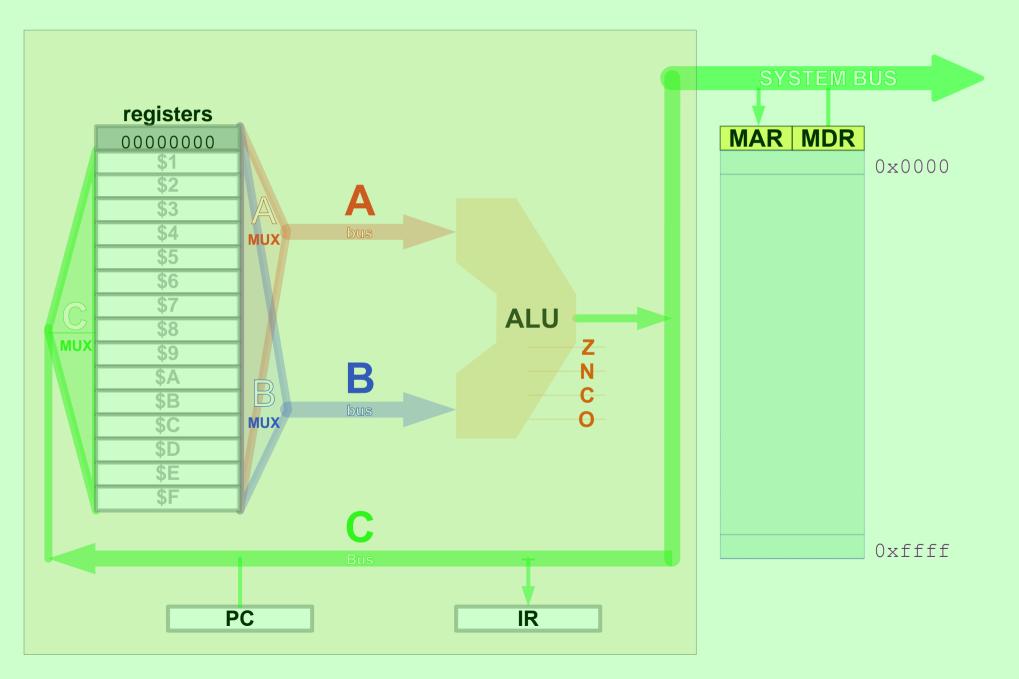
any

RE	GISTER NAME,	NUMBER, U	SE, CALL CONVENTION	
	NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
	X0 - X7	0-7	Arguments / Results	No
	X8	8	Indirect result location register	No
	X9-X15	9-15	Temporaries	No
	X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
	X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
	X18	18	Platform register for platform independent code; otherwise a temporary register	No
	X19-X27	19-27	Saved	Yes
	X28 (SP)	28	Stack Pointer	Yes
	X29 (FP)	29	Frame Pointer	Yes
	X30 (LR)	30	Reium Address	Yes
	XZR	31	The Constant Value 0	N.A.

						t Opcod
Instruc			Opeode Discourse	Sharrit		nge (l)
Mnemonic 5	Format B	Width (bib 6	<u>a</u>) Binary 000101	Bitary	Start (Her 0A0	0
FMULS	R	11	00011110001	000010		0EL
FULVS	R	11	00011110001	000110		011
FCMP5	R	11	00011110001	001000		061
PW00.8	R	11	00011110001	001010		061
rsuas	R	11	00011110001	001110		0EL
PMULD	R	11	00011110011	000010		0F3 -
TUIVD	R	11	00011110011	000110		0F3
PCHPD	R	11	00011110011	001000		0F3 -
PADDD	R	11	00011110011	001010		(F3
PSUBb	R	11	00011110011	001110		(F3
STURB	D	11	00111000000			1C0
LDURB	D	- 11	00111000010			IC2
B.cond	CB	8	01010100		2A0	- 2
STURE	D	- 11	01111000000			300
LOORE	D	11	01111000010			3C2
AND	R	11	10001010000			450
N00	R	11	10001011000			458
1004	1	10	1001000100		435	- 4
1004	1	10	1001001000		490	4
85	B	6	100101	000010	-4A0	4
VIGE	R	11	10011010110	000010		4D6
V101	R	11	10011010110 10011011000	011111		4D6
NUL	R	11	10011011010	011111		4D8 4DA
ENULS UNULS	R	11	10011011010			4DE
ORR	R	11	10101010000			4010 550
A005	R	11	10101010000			250 558
NDDD	1	10	1011000100		588	3
1880	1	10	1011001000		590	3
CRE	CB	8	10110100		540	5
(2015	CB	8	10110101		548	5.
STURM	D	11	10111000000			5C0
LOURSW	D	11	10111000100			5C4
STURS	R	11	10111100000			5E0
LOGRA	R	11	10111100010			5E2
	D	- 11	11001000000			640
LEXAR	D	11	11001000010			642
EON.	R	- 11	11001010000			650
209	R	11	11001011000			658
16081	1	10	1101000100		688	6
EORI	1	10	1101001000		690	Ĥ
HOVE	IM	9	110100101		694	- 0
LSR.	R	- 11	11010011010		<u> </u>	69A
LS1	R	11	11010011011			698
BR.	R	- 11	11010110000			6B0
M033	R	11	11101010000			750
5085	R	11	11101011000		<u> </u>	758
SUBLE	1	10	1111000100		788	7
ANOIS	1	10	1111001000		790	7
NOVIE	IM	9	111100101		794	
STUB.	D	11	11111000000			700
LDUR.	D		11111000010			XC2
STURD	R	11	11111100000	_		780
LOURD	K	11	11111100010	_		7E2

 Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they
occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2¹) 11-bit. opcodes.

10'12


pico-

	.OATING-P	DINT				۲	
STANDARD)				EEE 754 Sym	huk 🗸	
			Exe	onent	Fraction	Object	
$(-D)^{i} \times (1+\mathbb{P})$	$raction$) × 2 ^{β×}	ponant - Hiari)		0	0	+ 0	
	le Precision B			0	<i>≠</i> 0	± Denorm	
	cision Bias =		110.3	(AX + 1	anything	+ FL Pt. Num.	
			M	AX	0	± 40	
	Precision an			AX.	≠0	NaN	
	ision Format		5.P.1		55, D.P. MA3	= 2047	
8	Expor			Fin	tion		
31	30	23 22	_		Fraction	0	
63							
	0.5						
	ALLOCATIC					STACK FRAME	
sp 🔶	1111 1100 0000	Weber St	tąck.	1		Higher	
			T.		Argum		
			Y.		Argum	ent 8 Addresses	
			▲ _	PP -	Frond D.	al dans	
		Dear	nic Data		Saved Ro	Stack	
000	0 0000 1000 00	00		1		Grows	
		Stati	e Data		Local Va	riables	
				SP =		V	
PC-> 000	0 0000 0040 00	00 _{hr} T	'ent	36		Lower	
		8.0	erved]		Memory	
		0_11	crycu			Addresses	
	-						
DATA ALIC	INMENT		Section 7	Deal			
	W		Double V	vona	Word		
	Halfword	Halfwo	ed.	Halfw		alfword	
	te Byte	Byte	_		Byte Byte		
0		2 3	4			7	
			icant bits	-	ddress (Big E	ndian)	
		-					
	N SYNDRON		ER (ES	R)			
Exception Class (EC)			Instruc	tion Spec	ifie Syndromi	field (ISS)	
	26 25	24				0	
						-	
EXCEPTIO							
		se of Except	tion N	unber		ause of Exception	
0 0	nknown	Unknown		34	PC	Misaligned PC	
-	215.415 2.03	In the second se			Data	exception	
7	SIMD SIM	(D/FP regist disabled	RES	36	Data	Data Abort	
14	FPE ID	egal Executi	0.0	40	FPE	Fleating-point	
1.4		State	-			exception	
17	Sys S	upervisor Ca	11	52	WPT	Data Breakpoint	
		Exception				exception	
32	listr lie	struction Ab	ort	56	BKPT	SW Breakpoint	
				_		Exception	
SIZE PRET	INES AND ST	MIROUS					
-	IXES AND S		I.	SIZE	PREEX	SYMBOL	
SIZE	PREFIX	SYMBO	L.	SIZE 2 ¹⁰	PREFIX Kibi-	SYMBOL Ki	
SIZE 10 ³	PREFIX Kilo-	SYMBO K	L	SIZE 2 ¹⁰ 2 ³⁰	Kibi-	Ki	
51ZE 10 ³ 10 ⁵	PREFIX Kilo- Mega-	SYMBO K M		2 ¹⁰ 2 ²⁰	Kibi- Mebi-	Ki Mi	
51ZE 10 ³ 10 ⁵	PREFIX Kilo- Mega- Giga-	SYMBO K M G		2 ¹⁰ 2 ²⁰	Kibi- Mebi- Gibi-	Ki Mi Gi	
SIZE 10 ³ 10 ⁵ 10 ⁷ 10 ⁷	PREFIX Kilo- Mega- Giga- Tora-	SYMBO K M G T		2 ¹⁰ 2 ²⁰	Kibi- Mebi- Gibi- Tebi-	Ki Mi Gi Ti	
$\frac{SIZE}{10^3}$ 10^5 10^8 10^{12} 10^{13}	PREFIX Kilo- Mega- Giga- Tora- Peta-	SYMBO K M G T P		2 ¹⁰ 2 ²⁰	Kihi- Mebi- Gihi- Tebi- Pebi-	Ki Mi Gi Ti Pi	
$\frac{SIZE}{10^{3}}$ $\frac{10^{5}}{10^{5}}$ $\frac{10^{12}}{10^{12}}$ $\frac{10^{12}}{10^{13}}$	PREFIX Kilo- Mega- Giga- Tora- Peta- Exo-	SYMBO K M G T P E		2 ¹⁰ 2 ²⁰	Kibi- Mebi- Gibi- Tebi- Pebi- Exbi-	Ki Mi Gi Ti Pi Ei	
$\frac{8122}{10^3}$ $\frac{10^3}{10^8}$ $\frac{10^{12}}{10^{12}}$ $\frac{10^{12}}{10^{12}}$	PREFIX Kilo- Mega- Giga- Toro- Peta- Exo- Zeta-	SYMBO K M G T P E Z		2 ¹⁶ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰	KIN- Mebi- Gibi- Tebi- Pebi- Exbi- Zebi-	Ki Mi Ti Pi El Zi	
81ZE 10 ⁵ 10 ⁵ 10 ¹³ 10 ¹³ 10 ¹³ 10 ¹³ 10 ²¹ 10 ²¹	PREFIX Kilo- Mega- Giga- Tora- Peta- Exo- Zeta- Yota- Yota-	SYMBO K M G T P E E Z Y		2 ¹⁰ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰	Kibi- Mebi- Gibi- Tebi- Pebi- Exbi- Zebi- Zebi- Yobi-	Ki Mi Gi Ti Fi Ei Zi Yi	
SIZE 10 ³ 10 ⁵ 10 ¹³ 10 ¹³ 10 ¹³ 10 ²¹ 10 ²⁴ 10 ³	PREFIX Kilo- Mega- Giga- Tora- Peta- Exa- Zeta- Yota- milli-	SYMBO K M G T P E E Z Y M		2 ¹⁶ 2 ³⁰ 2 ⁴⁶ 2 ⁵⁰ 2 ⁵⁰ 2 ⁴⁶ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 10 ¹³	Kibi- Mebi- Gibi- Tebi- Pebi- Exbi- Zebi- Zebi- Yobi- femto-	Ki Mi Gi Ti Ki Ei Zi Yi Yi	
81ZE 10 ⁵ 10 ⁵ 10 ¹³ 10 ¹³ 10 ¹³ 10 ¹³ 10 ²¹ 10 ²¹	PREFIX Kilo- Mega- Giga- Tora- Peta- Exo- Zeta- Yota- Yota-	SYMBO K M G T P E E Z Y		2 ¹⁰ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰ 2 ⁵⁰	Kibi- Mebi- Gibi- Tebi- Pebi- Exbi- Zebi- Zebi- Yobi-	Ki Mi Gi Ti Fi El Zi Yi	

10'34

yocto-

The **TINY** Computer

Reference Data Card

TINY Instruction Set Architecture

Main Memory 65536 16-bit words

 $\texttt{M[n]} - \texttt{n}^\texttt{th} \text{ memory address}$

M[n] - content of M[n]

Register File 16 16-bit "registers"

15 real registers: \$1 ... \$F 1 pseudo-register: \$0 [\$0] = 0

Immediate values

- In n-bit signed int
- Un n-bit unsigned int
- cc 4-bit condition code

Instructions ^o

	Arithmetic / Logical					
0100	ADD	rT	rA	rB		
0101	SUB	rT	rA	rB		
0110	AND	rT	rA	rB		
0111	NOR	rT	rA	rB		

Shift / Load Immediate					
1000	LIH	rT	I	8	
1001	SLL	rT	rA	U4	
1010	SRS	rT	rA	U4	
1011	SRU	rT	rA	U4	

	Load/Store					
0111	LDI	rT	rA	U4		
0110	LDX	rT	rA	rB		
0101	STI	rS	rA	U4		
0100	STX	rS	rA	RB		

Branch/Special					
0011	BRC	С	rA	U4	
0010	BCU	rL	rA	rB	
0001	reserved				
0000	SYS		U12		

	Condition Codes					
0000	true	TT				
0001	false	FF				
0010	A = B signed	EQ				
0011	A B signed	NE				
0100	A < B signed	LT				
0101	A B signed	GE				
0110	A B signed	LE				
0111	A > B signed	GT				
1000	true					
1001	false					
1010	A = B unsigned					
1011	A B unsigned					
1100	A < B unsigned	LTU				
1101	A B unsigned	GEU				
1110	A B unsigned	LEU				
1111	A > B unsigned	GTU				

Notes

^o PC ~ PC+1 *before* instruction execution

¹ \$0 not changed

² Determines flags: z, n, c, o

³ Determines flags: z, n,

⁴ No op $\mathcal{U}_{U12} = 0$

Understanding Performance

From *qualitative* to *quantitative* analysis

Performance metrics (what to measure)

What does "performance" mean?

Performance equations

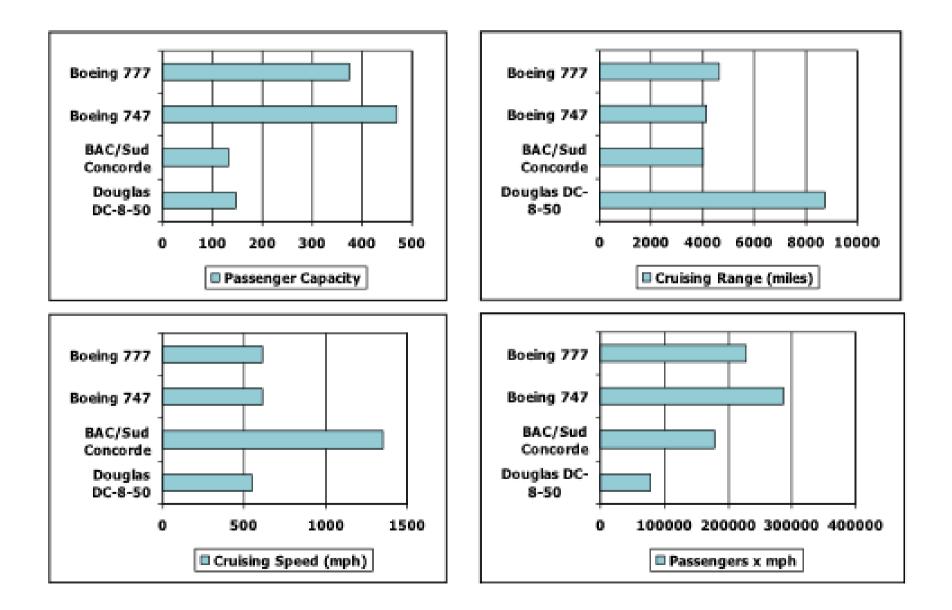
Relative performance

CPU time equation

Amdahl's law

Statistical tools

Average and weighted average


Performance Metrics

Different measures of airplane "performance"?

- Speed (mph) ?
- Range (miles) ?
- Capacity (passengers) ?
- Throughput (passengers miles per hour)?

Airplane	Passenger capacity	Cruising range (miles)	Cruising speed (m.p.h.)	Passenger throughput (passengers × m.p.h.)
Boeing 777	375	4630	610	228,750
Boeing 747	470	4150	610	286,700
BAC/Sud Concorde	132	4000	1350	178,200
Douglas DC-8-50	146	8720	544	79,424

Airplane Performance Metrics

Computer Performance Metrics

Execution (response) time (seconds)

CPU_{time} + I/O_{time}

Throughput (tasks per hour)

Availability (percent) $\frac{MTTF}{MTTF+MTTR}$

MTTF — Mean Time To Failure (years)

MTTR — Mean Time To Repair (minutes)

Execution energy (joules)

Throughput cost (tasks per hour per dollar)

Execution Time & Performance

Definition

$$\operatorname{Performance}_{X} \equiv \frac{1}{\operatorname{ExecutionTime}_{X}} \quad \operatorname{P}_{X} \equiv \frac{1}{\operatorname{E}_{X}}$$

Better performance mean shorter execution time

Relative performance

X is *n* times as fast as Y if and only if

$$\boldsymbol{n} = \frac{\mathbf{P}_X}{\mathbf{P}_Y} = \frac{\mathbf{E}_Y}{\mathbf{E}_X}$$

Y takes *n* times as long as X to execute

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

We know that A is *n* times as fast as B if

 $\frac{\text{Performance}_{A}}{\text{Performance}_{B}} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = n$

Thus the performance ratio is

$$\frac{15}{10} = 1.5$$

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times *slower than* computer A, since

 $\frac{\text{Performance}_{\text{A}}}{\text{Performance}_{\text{B}}} = 1.5$

means that

$$\frac{\text{Performance}_{A}}{1.5} = \text{Performance}_{B}$$

CPU Time Equation

Program execution time = $CPU_{time} + I/O_{time}$ CPU_{time} — key metric of **processor** performance We will return to I/O_{time} later in the course CPU_{time} = # instructions • (average) instruction_{time} instruction_{time} = (average) cycles per instruction • cycle_{time} $cycle_{time} = \frac{\# seconds}{cycle} = \frac{1}{clock_{rate}}$ (seconds) clock_{rate} (Hertz — cycles per second) $CPU_{time}(execution) = \frac{\# \text{ instructions}}{execution} \cdot \frac{\# \text{ cycles}}{\text{ instruction}} \cdot \frac{\# \text{ seconds}}{\text{ cycle}}$

Components of performance	Units of measure
CPU execution time for a program	Seconds for the program
Instruction count	Instructions executed for the program
Clock cycles per instruction (CPI)	Average number of clock cycles per instruction
Clock cycle time	Seconds per clock cycle

Figure 1.15 shows the basic measurements at different levels in the computer and what is being measured in each case. We can see how these factors are combined to yield execution time measured in seconds per program:

 $Time = Seconds/Program = \frac{Instructions}{Program} \times \frac{Clock cycles}{Instruction} \times \frac{Seconds}{Clock cycle}$

Always bear in mind that the only complete and reliable measure of computer performance is time. For example, changing the instruction set to lower the instruction count may lead to an organization with a slower clock cycle time or higher CPI that offsets the improvement in instruction count. Similarly, because CPI depends on type of instructions executed, the code that executes the fewest number of instructions may not be the fastest.

Performance Equations

Performance – inverse of execution time

performance: $P_x \equiv \frac{1}{T_x}$ *relative performance:* $\frac{P_x}{P_y} = \frac{T_y}{T_x}$

CPU time equation

 $T_{CPU}(\text{execution}) = \frac{\# \text{instructions}}{\text{execution}} \cdot \frac{\# \text{cycles}}{\text{instruction}} \cdot \frac{\# \text{seconds}}{\text{cycle}}$

Amdahl's law

$$T_{new} = \frac{\text{fraction affected} \cdot T_{old}}{\text{improvement}} + \text{fraction not affected} \cdot T_{old}$$

Relative CPU_{time} Performance

T (avantion)	_ # instructions	# cycles	# seconds
$T_{CPU}(execution)$	execution	instruction	cycle

$$T_{X} = \# \text{ instructions}_{X} \cdot \text{CPI}_{X} \cdot \text{ cycleTime}_{X}$$
$$= \frac{\# \text{ instructions}_{X} \cdot \text{CPI}_{X}}{\text{clockRate}_{X}}$$

P_X	Τγ_	# instructions _{<i>Y</i>} · CPI _{<i>Y</i>} · cycleTime _{<i>Y</i>}
$\overline{P_{Y}}$	$\overline{T_X}$ –	# instructions _{<i>X</i>} · CPI _{<i>X</i>} · cycleTime _{<i>X</i>}
P _X	Τ _Υ	# instructions $_{\mathbf{Y}} \cdot \text{CPI}_{\mathbf{Y}} \cdot \text{clockRate}_{\mathbf{X}}$
$\overline{P_{Y}}$	$\overline{T_X}$	# instructions _X · CPI _X · clockRate _Y

A New Computer Design

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program.

What clock rate should we tell the designer to target?

A New Computer Design

Let's first find the number of clock cycles required for the program on A:

$$CPU time_{A} = \frac{CPU \operatorname{clock} \operatorname{cycles}_{A}}{\operatorname{Clock} \operatorname{rate}_{A}}$$

$$10 \operatorname{seconds} = \frac{CPU \operatorname{clock} \operatorname{cycles}_{A}}{2 \times 10^{9} \frac{\operatorname{cycles}}{\operatorname{second}}}$$

$$CPU \operatorname{clock} \operatorname{cycles}_{A} = 10 \operatorname{seconds} \times 2 \times 10^{9} \frac{\operatorname{cycles}}{\operatorname{second}} = 20 \times 10^{9} \operatorname{cycles}$$

$$CPU \operatorname{clock} \operatorname{cycles}_{A} = 10 \operatorname{seconds} \times 2 \times 10^{9} \frac{\operatorname{cycles}}{\operatorname{second}} = 20 \times 10^{9} \operatorname{cycles}$$

$$CPU \operatorname{time}_{B} = \frac{1.2 \times CPU \operatorname{clock} \operatorname{cycles}_{A}}{\operatorname{Clock} \operatorname{rate}_{B}}$$

$$6 \operatorname{seconds} = \frac{1.2 \times 20 \times 10^{9} \operatorname{cycles}}{\operatorname{Clock} \operatorname{rate}_{B}}$$

$$Clock \operatorname{rate}_{B} = \frac{1.2 \times 20 \times 10^{9} \operatorname{cycles}}{6 \operatorname{seconds}} = \frac{0.2 \times 20 \times 10^{9} \operatorname{cycles}}{\operatorname{second}} = 4 \operatorname{GHz}$$

To run the program in 6 seconds, B must have twice the clock rate of A.

A New Computer Design

$\frac{P_X}{=}$	$T_{\mathbf{Y}}$	# instructions $_{\mathbf{Y}} \cdot \text{CPI}_{\mathbf{Y}} \cdot \text{clockRate}_{\mathbf{X}}$
$\overline{P_{Y}}$		# instructions _{<i>X</i>} · CPI _{<i>X</i>} · clockRate _{<i>Y</i>}

$$\frac{T_A}{T_B} = \frac{10}{6} = \frac{\# \text{ instructions} \cdot \text{CPI}_A \cdot \text{clockRate}_B}{\# \text{ instructions} \cdot \text{CPI}_B \cdot \text{clockRate}_A}$$

$$\frac{10}{6} = \frac{\# \text{ instructions} \cdot \text{CPI}_{\overline{A}} \cdot \text{clockRate}_{B}}{\# \text{ instructions} \cdot 1.2 \cdot \text{CPI}_{\overline{A}} \cdot 2 \text{ } \text{GHz}}$$
$$\text{clockRate}_{B} = \frac{10 \cdot 1.2 \cdot 2}{6} \text{ } \text{GHz} = 4 \text{ } \text{GHz}$$

Which Computer is Faster

Suppose we have two implementations of the same instruction set architecture.

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.

Which computer is faster for this program and by how much?

Which Computer is Faster?

We know that each computer executes the same number of instructions for the program; let's call this number *I*. First, find the number of processor clock cycles for each computer:

CPU clock cycles_A = $I \times 2.0$ CPU clock cycles_B = $I \times 1.2$

Now we can compute the CPU time for each computer:

CPU time_A = CPU clock cycles_A × Clock cycle time = $I \times 2.0 \times 250$ ps = $500 \times I$ ps

Likewise, for B:

CPU time_B = $I \times 1.2 \times 500 \text{ ps} = 600 \times I \text{ ps}$

Clearly, computer A is faster. The amount faster is given by the ratio of the execution times:

 $\frac{\text{CPU performance}_{\text{A}}}{\text{CPU performance}_{\text{B}}} = \frac{\text{Execution time}_{\text{B}}}{\text{Execution time}_{\text{A}}} = \frac{600 \times I \text{ ps}}{500 \times I \text{ ps}} = 1.2$

We can conclude that computer A is 1.2 times as fast as computer B for this program.

Which Computer is Faster?

P_X _	$T_{\mathbf{Y}}$	# instructions _{<i>Y</i>} · CPI _{<i>Y</i>} · cycleTime _{<i>Y</i>}
		# instructions _{<i>X</i>} · CPI _{<i>X</i>} · cycleTime _{<i>X</i>}

$$\frac{P_A}{P_B} = \frac{\# \text{ instructions} \cdot \text{CPI}_B \cdot \text{cycleTime}_B}{\# \text{ instructions} \cdot \text{CPI}_A \cdot \text{cycleTime}_A}$$
$$= \frac{\# \text{ instructions} \cdot 1.2 \cdot 500 \text{ ps}}{\# \text{ instructions} \cdot 2.0 \cdot 250 \text{ ps}}$$
$$= \frac{1.2 \cdot 500}{2.0 \cdot 250} = \frac{600}{500} = 1.2$$

Computer A is 1.2 times faster that Computer B

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a particular computer. The hardware designers have supplied the following facts:

	CPI for each instruction class			
	A	В	C	
CPI	1	2	3	

For a particular high-level language statement, the compiler writer is considering two code sequences that require the following instruction counts:

	Instruction counts for each instruction class			
Code sequence	A	В	С	
1	2	1	2	
2	4	1	1	

Which code sequence executes the most instructions? Which will be faster? What is the CPI for each sequence? Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6 instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count and CPI to find the total number of clock cycles for each sequence:

CPU clock cycles =
$$\sum_{i=1}^{n} (CPI_i \times C_i)$$

This yields

CPU clock cycles₁ = $(2 \times 1) + (1 \times 2) + (2 \times 3) = 2 + 2 + 6 = 10$ cycles

CPU clock cycles₂ = $(4 \times 1) + (1 \times 2) + (1 \times 3) = 4 + 2 + 3 = 9$ cycles

So code sequence 2 is faster, even though it executes one extra instruction. Since code sequence 2 takes fewer overall clock cycles but has more instructions, it must have a lower CPI. The CPI values can be computed by

$$CPI = \frac{CPU \text{ clock cycles}}{Instruction \text{ count}}$$

$$CPI_1 = \frac{CPU \text{ clock cycles}_1}{Instruction \text{ count}_1} = \frac{10}{5} = 2.0$$

$$CPI_2 = \frac{CPU \text{ clock cycles}_2}{Instruction \text{ count}_2} = \frac{9}{6} = 1.5$$

Comparing Code Segments

 $T_X = \#$ instructions_X · CPI_X · cycleTime_X

$$cycles_{X} = # instructions_{X} \cdot CPI_{X}$$

= A-cycles_{X} + B-cycles_{X} + C-cycles_{X}

 $cycles_{1} = #A-instr_{1} \cdot CPI_{A} + #B-instr_{1} \cdot CPI_{B} + #C-instr_{1} \cdot CPI_{C}$ $cycles_{2} = #A-instr_{2} \cdot CPI_{A} + #B-instr_{2} \cdot CPI_{B} + #C-instr_{2} \cdot CPI_{C}$

cycles₁ =
$$2 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 = 10$$
 CPI₁ = $\frac{10}{5} = 2.0$

cycles₂ =
$$4 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 = 9$$
 CPI₂ = $\frac{9}{6} = 1.5$

Check Yourself

A given application written in Java runs 15 seconds on a desktop processor. A new Java compiler is released that requires only 0.6 as many instructions as the old compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the application to run using this new compiler? Pick the right answer from the three choices below:

a.
$$\frac{15 \times 0.6}{1.1} = 8.2 \text{ sec}$$

b. $15 \times 0.6 \times 1.1 = 9.9 \text{ se}$
c. $\frac{15 \times 1.1}{0.6} = 27.5 \text{ sec}$

CPU Time Equation

P_X	T_{Y}	# instructions _Y · CPI _Y · clock rate _X
$\overline{P_{Y}}$	$\overline{T_X}$ –	# instructions _X · CPI _X · clock rate _Y

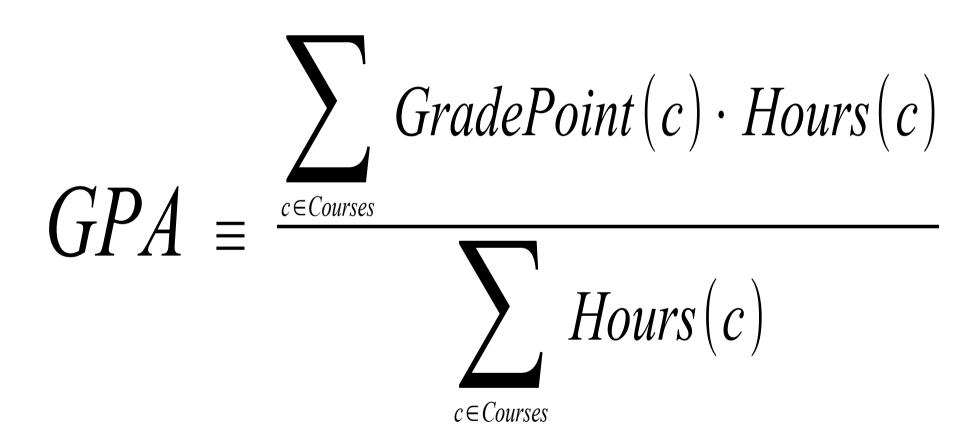
T_J	# instructions $_J \cdot \operatorname{CPI}_J \cdot \operatorname{clock} \operatorname{rate}_K$
$\overline{T_{K}}$	# instructions _K · CPI _K · clock rate _J

15 seconds _	# instructions J	CPI_J ·	elock rate _J
T_{K}	# instructions $_J \cdot 0$	$.6 \cdot \frac{\text{CPI}_J}{J} \cdot 1.1$	$1 \cdot \frac{1}{\text{clock rate}_J}$

 $T_{K} = 15 \cdot 0.6 \cdot 1.1 = 9.9$ seconds

Basic Statistical Tools

Given values: $\{v_1, v_2, ..., v_N\}$ & weights: $\{w_1, w_2, ..., w_N\}$


average:
$$\vec{v} \equiv \frac{\sum_{i=1}^{N} v_i}{N}$$

total weight: $W \equiv \sum_{i=1}^{N} w_i$ normalized weight: $q_i \equiv \frac{w_i}{W}$ $(\sum_{i=0}^{N} q_i = 1)$

weighted average:

$$\frac{\sum_{i=1}^{N} w_i v_i}{\sum_{i=1}^{N} w_i} = \frac{\sum_{i=1}^{N} w_i v_i}{W} = \sum_{i=1}^{N} \frac{w_i}{W} v_i = \sum_{i=1}^{N} q_i v_i$$

Grade Point Average

Typical Instruction Statistics

Instruction types, frequencies, and execution times 50% ALU instructions 5 CPI **30%** Memory instructions 20% Load 8 CPI 10% Store 6 CPI 20% Branch instructions 10 CPI 0.5% Special instructions

Average Cycles Per Instruction

(Weighted) average CPI

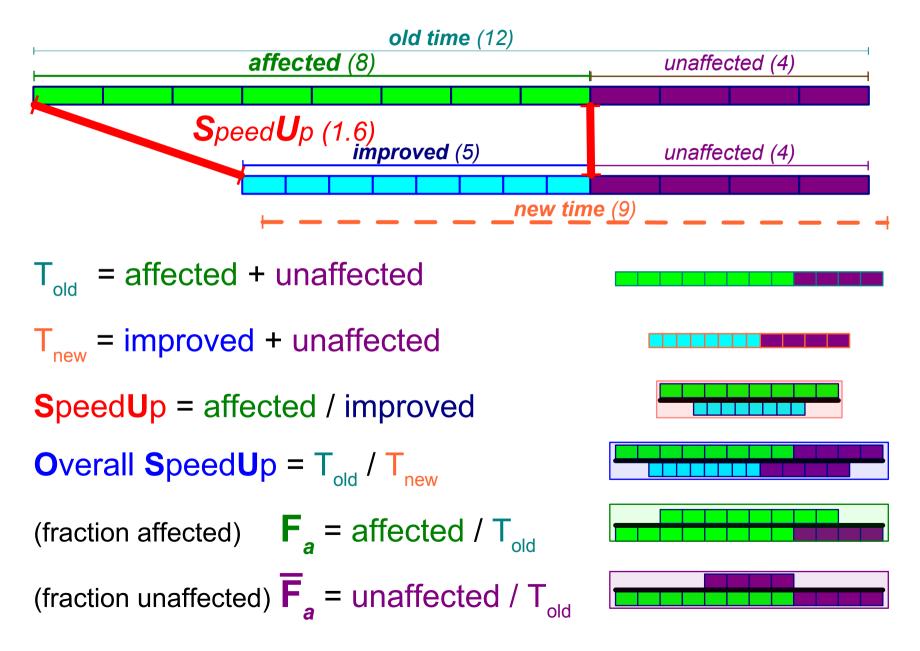
 $= q_{ALU}T_{ALU} + q_{Load}T_{Load} + q_{store}T_{store} + q_{Branch}T_{Branch}$ $= 0.5 \cdot 5 + 0.2 \cdot 8 + 0.1 \cdot 6 + 0.2 \cdot 10$ = 2.5 + 1.6 + 0.6 + 2.0 $= 6.7 \text{ cycles approximation: } 20 / 6.7 \approx 3$

Execution time fraction by instruction type

ALU	2.5 / 6.7	~ 37.5%
Load	1.6 / 6.7	~ 24.0%
Store	0.6 / 6.7	~ 9.0%
Branch	2.0 / 6.7	~ 30.0%

Performance Equations

Performance – inverse of execution time


performance:
$$P_x \equiv \frac{1}{T_x}$$
 relative performance: $\frac{P_x}{P_y} = \frac{T_y}{T_x}$

CPU time equation

 $T_{CPU}(\text{execution}) = \frac{\# \text{instructions}}{\text{execution}} \cdot \frac{\# \text{cycles}}{\text{instruction}} \cdot \frac{\# \text{seconds}}{\text{cycle}}$

Amdahl's law

$$T_{new} = \frac{\text{fraction affected} \cdot T_{old}}{\text{improvement}} + \text{fraction not affected} \cdot T_{old}$$

Improving a Race Car

	% time	% fuel useage	% tire ware	% miles
acceleration	5	30	10	10
cruise	90	50	50	20
brake	5	10	40	40
turns	15	10	10	30

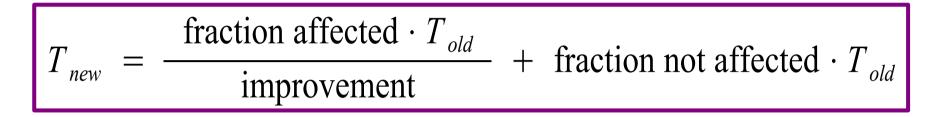
Average Cycles Per Instruction

(Weighted) average CPI

 $= q_{ALU}T_{ALU} + q_{Load}T_{Load} + q_{store}T_{store} + q_{Branch}T_{Branch}$ $= 0.5 \cdot 5 + 0.2 \cdot 8 + 0.1 \cdot 6 + 0.2 \cdot 10$ = 2.5 + 1.6 + 0.6 + 2.0 $= 6.7 \text{ cycles approximation: } 20 / 6.7 \approx 3$

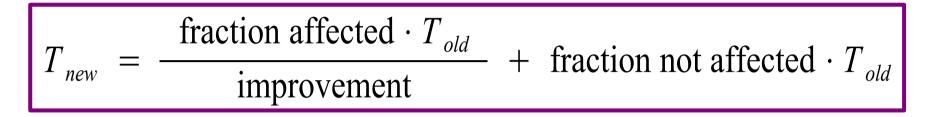
Execution time fraction by instruction type

ALU	2.5 / 6.7	~ 37.5%
Load	1.6 / 6.7	~ 24.0%
Store	0.6 / 6.7	~ 9.0%
Branch	2.0 / 6.7	~ 30.0%

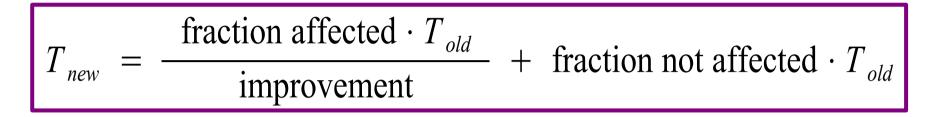

CPU Time Equation

T (avacution).	# instructions	# cycles	# seconds
$T_{CPU}(\text{execution}) =$	execution	instruction	cycle

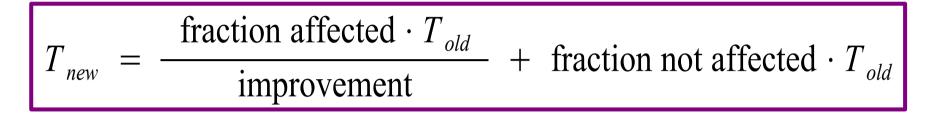
If T_{CPU} (execution) ≈ 20 seconds, cycle_{time} = 10^{-9} seconds


20 seconds
$$\approx$$
 # instructions $\cdot 6.7 \cdot 10^{-9}$ seconds
instructions $\approx \frac{20}{6.7 \cdot 10^{-9}} \approx 3 \cdot 10^{9}$

instruction _{time} =	# seconds	# cycles	# seconds
	instruction	instruction	cycle



Improvement X reduces ALU instructions time from 5 to 4 ns $T_X = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$


$$T_{X} = \left(\frac{\frac{2.5}{6.7}}{\frac{5}{4}} + \frac{4.2}{6.7}}{20}\right) \sec \approx \left(\frac{7.5}{1.25} + 12.6\right) \sec = 18.6 \sec$$

Improvement Y reduces Load instructions time from 8 to 4 ns $T_{Y} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $T_{Y} = \left| \frac{\frac{1.6}{6.7} 20}{\frac{8}{4}} + \frac{5.1}{6.7} 20 \right| \sec \approx \left(\frac{4.8}{2} + 15.3 \right) \sec = 17.7 \sec$

Improvement Z reduces Store instructions time from 6 to 2 ns $T_{Z} = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $T_{Z} = \left| \frac{\frac{6.0}{6.7} 20}{\frac{6}{2}} + \frac{6.1}{6.7} 20 \right| sec \approx \left(\frac{1.8}{3} + 18.3 \right) sec = 18.9 sec$

Improvement Wreduces Branch instruction time from 10 to 5 ns $T_W = \frac{\text{fraction affected} \cdot 20 \text{ sec}}{\text{improvement}} + \text{fraction not affected} \cdot 20 \text{ sec}$ $T_{W} = \left| \frac{\frac{2.0}{6.7} 20}{\frac{10}{5}} + \frac{4.7}{6.7} 20 \right| sec \approx \left(\frac{6}{2} + 14.1 \right) sec = 17.1 sec$

Relative Performance

<i>performance:</i> $P_x \equiv \frac{1}{T_x}$ <i>relative performance:</i>	$\frac{P_x}{P_y} = \frac{T_y}{T_x}$
$\frac{P_X}{P_{old}} = \frac{T_{old}}{T_X} = \frac{20}{18.6} \approx 1.075$	
$\frac{P_Y}{P_{old}} = \frac{T_{old}}{T_Y} = \frac{20}{17.7} \approx 1.130$	
$\frac{P_Z}{P_{old}} = \frac{T_{old}}{T_Z} = \frac{20}{18.9} \approx 1.058$	
$\frac{P_{W}}{P_{old}} = \frac{T_{old}}{T_{Z}} = \frac{20}{17.1} \approx 1.170$	